背景问题 #
前阵子,社区有小伙伴在使用 Easysearch 的数据压缩功能时发现,在开启 source_reuse 和 ZSTD 后,一个字段的内容看不到了。
索引的设置如下:
{
......
"settings": {
"index": {
"codec": "ZSTD",
"source_reuse": "true"
}
},
"mappings": {
"dynamic_templates": [
{
"message_field": {
"path_match": "message",
"mapping": {
"norms": false,
"type": "text"
},
"match_mapping_type": "string"
}
},
{
"string_fields": {
"mapping": {
"norms": false,
"type": "text",
"fields": {
"keyword": {
"ignore_above": 256,
"type": "keyword"
}
}
},
"match_mapping_type": "string",
"match": "*"
}
}
]
......
}
然后产生的一个多字段内容能被搜索到,但是不可见。
类似于下面的这个情况:
原因分析 #
我们先来看看整个字段展示经历的环节:
- 字段写入索引的时候,不仅写了 text 字段也写了 keyword 字段。
- keyword 字段产生倒排索引的时候,会忽略掉长度超过 ignore_above 的内容。
- 因为开启了 source_reuse,_source 字段中与 doc_values 或倒排索引重复的部分会被去除。
- 产生的数据文件进行了 ZSTD 压缩,进一步提高了数据的压缩效率。
- 索引进行倒排或者 docvalue 的查询,检索到这个文档进行展示。
- 展示的时候通过文档 id 获取
_source
或者docvalues_fields
的内容来展示文本,但是文本内容是空的。
其中步骤 4 中的 ZSTD 压缩,是作用于数据文件的,并不对数据内容进行修改。因此,我们来专注于其他环节。
问题复现 #
首先,这个字段索引的配置也是一个 es 常见的设置,并不会带来内容显示缺失的问题。
"mapping": {
"type": "text",
"fields": {
"keyword": {
"ignore_above": 256,
"type": "keyword"
}
}
},
那么,source_reuse 就成了我们可以重点排查的环节。
source 发生了什么 #
source_reuse 的作用描述如下:
source_reuse: 启用 source_reuse 配置项能够去除 _source 字段中与 doc_values 或倒排索引重复的部分,从而有效减小索引总体大小,这个功能对日志类索引效果尤其明显。
source_reuse 支持对以下数据类型进行压缩:keyword,integer,long,short,boolean,float,half_float,double,geo_point,ip, 如果是 text 类型,需要默认启用 keyword 类型的 multi-field 映射。 以上类型必须启用 doc_values 映射(默认启用)才能压缩。
这是一个对 _source
字段进行产品化的功能实现。为了减少索引的存储体量,简单粗暴的操作是直接将_source
字段进行关闭,利用其他数据格式去存储,在查询的时候对应的利用 docvalue 或者 indexed 去展示文本内容。
那么 _source
关闭后,会不会也有这样的问题呢?
测试的步骤如下:
展开查看完整代码
# 1. 创建不带source的双字段索引
PUT test_source
{
"mappings": {
"_source": {
"enabled": false
},
"properties": {
"msg": {
"type": "text",
"fields": {
"keyword": {
"ignore_above": 256,
"type": "keyword"
}
}
}
}
}
}
# 2. 写入测试数据
POST test_source/_doc/1
{"msg":"""[08-27 14:28:45] [DBG] [config.go:273] config contain variables, try to parse with environments
[08-27 14:28:45] [DBG] [config.go:214] load config files: []
[08-27 14:28:45] [INF] [pipeline.go:419] creating pipeline: pipeline_logging_merge
[08-27 14:28:45] [INF] [pipeline.go:419] creating pipeline: ingest_pipeline_logging
[08-27 14:28:45] [INF] [pipeline.go:419] creating pipeline: async_messages_merge
[08-27 14:28:45] [INF] [pipeline.go:419] creating pipeline: metrics_merge
[08-27 14:28:45] [INF] [pipeline.go:419] creating pipeline: request_logging_merge
[08-27 14:28:45] [INF] [pipeline.go:419] creating pipeline: ingest_merged_requests
[08-27 14:28:45] [INF] [pipeline.go:419] creating pipeline: async_ingest_bulk_requests
[08-27 14:28:45] [INF] [module.go:159] started module: pipeline
[08-27 14:28:45] [DBG] [module.go:163] all system module are started
[08-27 14:28:45] [DBG] [floating_ip.go:348] setup floating_ip, root privilege are required
[08-27 14:28:45] [DBG] [queue_config.go:121] init new queue config:e60457c6eae50a4eabbb62fc1001dccc,bulk_requests
[08-27 14:28:45] [DBG] [queue_config.go:121] init new queue config:e60457c6eae50a4eabbb62fc1001dccc,bulk_requests
[08-27 14:28:45] [DBG] [queue_config.go:121] init new queue config:e60457c6eae50a4eabbb62fc1001dccc,bulk_requests
[08-27 14:28:45] [DBG] [processor.go:139] generated new processors: indexing_merge
[08-27 14:28:45] [DBG] [pipeline.go:466] processing pipeline_v2: metrics_merge
[08-27 14:28:45] [DBG] [processor.go:139] generated new processors: when
[08-27 14:28:45] [DBG] [pipeline.go:466] processing pipeline_v2: ingest_merged_requests
[08-27 14:28:45] [DBG] [processor.go:139] generated new processors: indexing_merge
[08-27 14:28:45] [DBG] [pipeline.go:466] processing pipeline_v2: request_logging_merge
[08-27 14:28:45] [DBG] [processor.go:139] generated new processors: indexing_merge
[08-27 14:28:45] [DBG] [pipeline.go:466] processing pipeline_v2: async_messages_merge
[08-27 14:28:45] [DBG] [processor.go:139] generated new processors: bulk_indexing
[08-27 14:28:45] [DBG] [pipeline.go:466] processing pipeline_v2: ingest_pipeline_logging
[08-27 14:28:45] [DBG] [queue_config.go:121] init new queue config:1216c96eb876eee5b177d45436d0a362,gateway-pipeline-logs
[08-27 14:28:45] [DBG] [processor.go:139] generated new processors: bulk_indexing
[08-27 14:28:45] [DBG] [processor.go:139] generated new processors: indexing_merge
[08-27 14:28:45] [DBG] [pipeline.go:466] processing pipeline_v2: pipeline_logging_merge
[08-27 14:28:45] [DBG] [pipeline.go:466] processing pipeline_v2: async_ingest_bulk_requests
[08-27 14:28:45] [DBG] [badger.go:110] init badger database [queue_consumer_commit_offset]
[08-27 14:28:45] [INF] [floating_ip.go:290] floating_ip entering standby mode
[08-27 14:28:45] [DBG] [badger.go:110] init badger database [dis_locker]
[08-27 14:28:45] [DBG] [time.go:208] refresh low precision time in background
[08-27 14:28:45] [DBG] [domain_actions.go:278] elasticsearch metadata [backup] was not found
[08-27 14:28:45] [DBG] [bulk_indexing.go:355] metadata for [backup] is nil
[08-27 14:28:50] [INF] [module.go:178] started plugin: floating_ip
[08-27 14:28:50] [INF] [module.go:178] started plugin: force_merge
[08-27 14:28:50] [DBG] [network.go:78] network io stats will be included for map[]
[08-27 14:28:50] [INF] [module.go:178] started plugin: metrics
[08-27 14:28:50] [INF] [module.go:178] started plugin: statsd
[08-27 14:28:50] [DBG] [entry.go:100] reuse port 0.0.0.0:7005
[08-27 14:28:50] [DBG] [metrics.go:205] collecting network metrics
[08-27 14:28:50] [DBG] [metrics.go:174] collecting instance metrics
[08-27 14:28:50] [DBG] [elasticsearch.go:128] init elasticsearch proxy instance: prod
[08-27 14:28:50] [DBG] [filter.go:103] generated new filters: when, elasticsearch
[08-27 14:28:50] [DBG] [entry.go:142] apply filter flow: [*] [/_bulk] [ filters ]
[08-27 14:28:50] [DBG] [entry.go:142] apply filter flow: [*] [/{any_index}/_bulk] [ filters ]
[08-27 14:28:50] [DBG] [elasticsearch.go:128] init elasticsearch proxy instance: prod
[08-27 14:28:50] [DBG] [filter.go:103] generated new filters: request_path_limiter, elasticsearch
[08-27 14:28:50] [INF] [module.go:178] started plugin: gateway
[08-27 14:28:50] [DBG] [module.go:182] all user plugin are started
[08-27 14:28:50] [INF] [module.go:184] all modules are started
[08-27 14:28:50] [INF] [app.go:556] gateway is up and running now.
[08-27 14:28:50] [DBG] [domain_actions.go:278] elasticsearch metadata [backup] was not found
[08-27 14:28:50] [DBG] [bulk_indexing.go:355] metadata for [backup] is nil
[08-27 14:28:55] [DBG] [domain_actions.go:278] elasticsearch metadata [backup] was not found
[08-27 14:28:55] [DBG] [bulk_indexing.go:355] metadata for [backup] is nil
[08-27 14:29:00] [DBG] [metrics.go:205] collecting network metrics
[08-27 14:29:00] [DBG] [metrics.go:174] collecting instance metrics
[08-27 14:29:00] [DBG] [domain_actions.go:278] elasticsearch metadata [backup] was not found
[08-27 14:29:00] [DBG] [bulk_indexing.go:355] metadata for [backup] is nil
[08-27 14:29:05] [DBG] [domain_actions.go:278] elasticsearch metadata [backup] was not found
[08-27 14:29:05] [DBG] [bulk_indexing.go:355] metadata for [backup] is nil
[08-27 14:29:10] [DBG] [metrics.go:205] collecting network metrics
[08-27 14:29:10] [DBG] [metrics.go:174] collecting instance metrics
[08-27 14:29:10] [DBG] [domain_actions.go:278] elasticsearch metadata [backup] was not found"""}
# 3. 查询数据
GET test_source/_search
此时,可以看到,存入的文档检索出来是空的
_source
字段是用于索引时传递的原始 JSON 文档主体。它本身未被索引成倒排(因此不作用于 query
阶段),只是在执行查询时用于 fetch
文档内容。
对于 text 类型,关闭_source
,则字段内容自然不可被查看。
而对于 keyword 字段,查看_source
也是不行的。可是 keyword 不仅存储source
,还存储了 doc_values。因此,对于 keyword 字段类型,可以考虑关闭_source
,使用 docvalue_fields
来查看字段内容。
测试如下:
展开查看完整代码
# 1. 创建测试条件的索引
PUT test_source2
{
"mappings": {
"_source": {
"enabled": false
},
"properties": {
"msg": {
"type": "keyword"
}
}
}
}
# 2. 写入数据
POST test_source2/_doc
{"msg":"1111111"}
# 3. 使用 docvalue_fields 查询数据
POST test_source2/_search
{"docvalue_fields": ["msg"]}
# 返回结果
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "test_source2",
"_type": "_doc",
"_id": "yBvTj5kBvrlGDwP29avf",
"_score": 1,
"fields": {
"msg": [
"1111111"
]
}
}
]
}
}
在如果是 text 类型,需要默认启用 keyword 类型的 multi-field 映射。 以上类型必须启用 doc_values 映射(默认启用)才能压缩。
这句介绍里,也可以看到 source_reuse
的正常使用需要 doc_values
。那是不是一样使用 doc_values
进行内容展示呢?既然用于 docvalue_fields
内容展示,为什么还是内容看不了(不可见)呢?
keyword 的 ignore_above #
仔细看问题场景里 keyword 的配置,它使用了 ignore_above。那么,会不会是这里的问题?
我们将 ignore_above 配置带入上面的测试,这里为了简化测试,ignore_above 配置为 3。为区分问题现象,这里两条长度不同的文本进去,一条为 11
,一条为1111111
,可以作为参数作用效果的对比。
展开查看完整代码
# 1. 创建测试条件的索引,ignore_above 设置为3
PUT test_source3
{
"mappings": {
"_source": {
"enabled": false
},
"properties": {
"msg": {
"type": "keyword",
"ignore_above": 3
}
}
}
}
# 2. 写入数据,
POST test_source3/_doc
{"msg":"1111111"}
POST test_source3/_doc
{"msg":"11"}
# 3. 使用 docvalue_fields 查询数据
POST test_source3/_search
{"docvalue_fields": ["msg"]}
# 返回内容
{
"took": 363,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "test_source3",
"_type": "_doc",
"_id": "yhvjj5kBvrlGDwP22KsG",
"_score": 1
},
{
"_index": "test_source3",
"_type": "_doc",
"_id": "yxvzj5kBvrlGDwP2Nav6",
"_score": 1,
"fields": {
"msg": [
"11"
]
}
}
]
}
}
OK! 问题终于复现了。我们再来看看作为关键因素的 ignore_above 参数是用来干嘛的。
ignore_above:任何长度超过此整数值的字符串都不应被索引。默认值为 2147483647。默认动态映射会创建一个 ignore_above 设置为 256 的 keyword 子字段。
也就是说,ignore_above 在(倒排)索引时会截取内容,防止产生的索引内容过长。
但是从测试的两个文本来看,**面对在参数范围内的文档,docvalues 会正常创建,而超出参数范围的文本而忽略创建(**至于这个问题背后的源码细节我们可以另外开坑再鸽,此处省略)。
那么,在 source_reuse 下,keyword 的 ignore_above 是不是起到了相同的作用呢?
我们可以在问题场景上去除 ignore_above,参数试试,来看下面的测试:
展开查看完整代码
# 1. 创建测试条件的索引,使用 source_reuse,设置 ignore_above 为3
PUT test_source4
{
"settings": {
"index": {
"source_reuse": "true"
}
},
"mappings": {
"properties": {
"msg": {
"type": "text",
"fields": {
"keyword": {
"ignore_above": 3,
"type": "keyword"
}
}
}
}
}
}
# 2. 写入数据
POST test_source4/_doc
{"msg":"1111111"}
POST test_source4/_doc
{"msg":"11"}
# 3. 使用 docvalue_fields 查询数据
POST test_source4/_search
# 返回内容
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "test_source4",
"_type": "_doc",
"_id": "zBv2j5kBvrlGDwP2_au-",
"_score": 1,
"_source": {}
},
{
"_index": "test_source4",
"_type": "_doc",
"_id": "zRv2j5kBvrlGDwP2_qsO",
"_score": 1,
"_source": {
"msg": "11"
}
}
]
}
}
可以看到,数据“不可见”的问题被完整的复现了。
小结 #
从上面一系列针对数据“不可见”问题的测试,我们可以总结以下几点:
- 在 source_reuse 的压缩使用中,keyword 字段的 ignore_ablve 参数尽量使用默认值,不要进行过短的设置(这个 tip 已补充在 Easysearch 文档中)。
- 在 source_reuse 是对数据压缩常见方法-关闭 source 字段的产品化处理,在日志压缩场景中有效且便捷,可以考虑多加利用。
- keyword 的 ignore_above 参数,不仅超出长度范围不进行倒排索引,也不会写入 docvalues。
特别感谢:社区@牛牪犇群
更多 Easysearch 资料请查看 官网文档。